Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(8)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441967

RESUMO

Antitumor responses of CD8+ T cells are tightly regulated by distinct metabolic fitness. High levels of glutathione (GSH) are observed in the majority of tumors, contributing to cancer progression and treatment resistance in part by preventing glutathione peroxidase 4-dependent (GPX4-dependent) ferroptosis. Here, we show the necessity of adenosine A2A receptor (A2AR) signaling and the GSH/GPX4 axis in orchestrating metabolic fitness and survival of functionally competent CD8+ T cells. Activated CD8+ T cells treated ex vivo with simultaneous inhibition of A2AR and lipid peroxidation acquire a superior capacity to proliferate and persist in vivo, demonstrating a translatable means to prevent ferroptosis in adoptive cell therapy. Additionally, we identify a particular cluster of intratumoral CD8+ T cells expressing a putative gene signature of GSH metabolism (GMGS) in association with clinical response and survival across several human cancers. Our study addresses a key role of GSH/GPX4 and adenosinergic pathways in fine-tuning the metabolic fitness of antitumor CD8+ T cells.


Assuntos
Neoplasias , Receptor A2A de Adenosina , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Glutationa/metabolismo
2.
Nat Commun ; 15(1): 1987, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443336

RESUMO

Abundant macrophage infiltration and altered tumor metabolism are two key hallmarks of glioblastoma. By screening a cluster of metabolic small-molecule compounds, we show that inhibiting glioblastoma cell glycolysis impairs macrophage migration and lactate dehydrogenase inhibitor stiripentol emerges as the top hit. Combined profiling and functional studies demonstrate that lactate dehydrogenase A (LDHA)-directed extracellular signal-regulated kinase (ERK) pathway activates yes-associated protein 1 (YAP1)/ signal transducer and activator of transcription 3 (STAT3) transcriptional co-activators in glioblastoma cells to upregulate C-C motif chemokine ligand 2 (CCL2) and CCL7, which recruit macrophages into the tumor microenvironment. Reciprocally, infiltrating macrophages produce LDHA-containing extracellular vesicles to promote glioblastoma cell glycolysis, proliferation, and survival. Genetic and pharmacological inhibition of LDHA-mediated tumor-macrophage symbiosis markedly suppresses tumor progression and macrophage infiltration in glioblastoma mouse models. Analysis of tumor and plasma samples of glioblastoma patients confirms that LDHA and its downstream signals are potential biomarkers correlating positively with macrophage density. Thus, LDHA-mediated tumor-macrophage symbiosis provides therapeutic targets for glioblastoma.


Assuntos
Glioblastoma , Animais , Humanos , Camundongos , Glioblastoma/genética , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5 , Ácido Láctico , Simbiose , Microambiente Tumoral
3.
Cell Metab ; 36(1): 62-77.e8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38134929

RESUMO

Glioblastoma (GBM) is a malignancy dominated by the infiltration of tumor-associated myeloid cells (TAMCs). Examination of TAMC metabolic phenotypes in mouse models and patients with GBM identified the de novo creatine metabolic pathway as a hallmark of TAMCs. Multi-omics analyses revealed that TAMCs surround the hypoxic peri-necrotic regions of GBM and express the creatine metabolic enzyme glycine amidinotransferase (GATM). Conversely, GBM cells located within these same regions are uniquely specific in expressing the creatine transporter (SLC6A8). We hypothesized that TAMCs provide creatine to tumors, promoting GBM progression. Isotopic tracing demonstrated that TAMC-secreted creatine is taken up by tumor cells. Creatine supplementation protected tumors from hypoxia-induced stress, which was abrogated with genetic ablation or pharmacologic inhibition of SLC6A8. Lastly, inhibition of creatine transport using the clinically relevant compound, RGX-202-01, blunted tumor growth and enhanced radiation therapy in vivo. This work highlights that myeloid-to-tumor transfer of creatine promotes tumor growth in the hypoxic niche.


Assuntos
Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/metabolismo , Creatina , Hipóxia/metabolismo , Células Mieloides/metabolismo , Células Progenitoras Mieloides , Linhagem Celular Tumoral
4.
Nat Commun ; 14(1): 4129, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452018

RESUMO

Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.


Assuntos
Ácido Láctico , Retina , Camundongos , Animais , Ácido Láctico/metabolismo , Retina/metabolismo , Regulação da Expressão Gênica , Metabolismo Energético , Glicólise/genética , Morfogênese/genética , Olho/metabolismo , Mamíferos/metabolismo
5.
Front Immunol ; 14: 1331287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299146

RESUMO

Introduction: Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes. Methods: Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues. Results: Our data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression. Discussion: The dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment.


Assuntos
Glioblastoma , Humanos , Receptores CXCR6/metabolismo , Linfócitos T/metabolismo , Quimiocina CXCL16/metabolismo , Microglia/metabolismo , Microambiente Tumoral
6.
Nat Immunol ; 23(5): 692-704, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484407

RESUMO

The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Cell Metab ; 29(4): 1003-1011.e4, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30773464

RESUMO

Serine is a substrate for nucleotide, NADPH, and glutathione (GSH) synthesis. Previous studies in cancer cells and lymphocytes have shown that serine-dependent one-carbon units are necessary for nucleotide production to support proliferation. Presently, it is unknown whether serine metabolism impacts the function of non-proliferative cells, such as inflammatory macrophages. We find that in macrophages, serine is required for optimal lipopolysaccharide (LPS) induction of IL-1ß mRNA expression, but not inflammasome activation. The mechanism involves a requirement for glycine, which is made from serine, to support macrophage GSH synthesis. Cell-permeable GSH, but not the one-carbon donor formate, rescues IL-1ß mRNA expression. Pharmacological inhibition of de novo serine synthesis in vivo decreased LPS induction of IL-1ß levels and improved survival in an LPS-driven model of sepsis in mice. Our study reveals that serine metabolism is necessary for GSH synthesis to support IL-1ß cytokine production.


Assuntos
Interleucina-1beta/biossíntese , Macrófagos/metabolismo , Serina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Sepse/induzido quimicamente , Sepse/metabolismo
9.
Brain Behav Immun ; 62: 24-29, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28179106

RESUMO

Glioblastoma (GBM) is the most common malignant brain tumor in adults with a median survival of 14.6months. A contributing factor to GBM aggressiveness is the intratumoral expression of the potently immunosuppressive enzyme, indoleamine 2,3 dioxygenase 1 (IDO1). The enzymatic activity of IDO1 is associated with the conversion of tryptophan into downstream kynurenine (Kyn), which has previously been hypothesized to contribute toward the suppression of tumor immunity. Utilizing the syngeneic, immunocompetent, intracranial GL261 cell GBM model, we previously demonstrated that tumor cell, but not non-tumor cell IDO1, suppresses T cell-mediated brain tumor regression in mice. Paradoxically, we also showed that the survival advantage mediated by immune checkpoint blockade is abrogated by non-tumor cell IDO1 deficiency. Here, we have built on our past observations and confirm the maladaptive role of tumor cell IDO1 in a novel mouse GBM model. We also demonstrate that, non-tumor cells, rather than mouse GBM cells, are the dominant contributor to IDO1-mediated enzyme activity. Finally, we show the novel associations between maximally-effective immune-checkpoint blockade-mediated survival, non-tumor cell IDO1 and intra-GBM Kyn levels. These data suggest for the first time that, GBM cell-mediated immunosuppression is IDO1 enzyme independent, while the survival benefits of immune checkpoint blockade require non-tumor cell IDO1 enzyme activity. Given that current clinical inhibitors vary in their mechanism of action, in terms of targeting IDO1 enzyme activity versus enzyme-independent effects, this work suggests that choosing an appropriate IDO1 pharmacologic will maximize the effectiveness of future immune checkpoint blockade approaches.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Animais , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Glioblastoma/patologia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Camundongos , Camundongos Knockout
10.
Methods Enzymol ; 542: 125-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24862264

RESUMO

Evidence accumulating over the past decade has linked alterations in bioenergetic metabolism to the pathogenesis of several diseases, including inflammatory conditions and cancer. However, the mutual relationship between the effector functions and the metabolism of immune cells has begun to emerge only recently. Similar to malignant cells, both innate and adaptive immune cells undergo a metabolic reprogramming that is required for effector functions, de facto underlying the elicitation of a robust immune response. These changes allow immune cells not only to rapidly respond to pathogens or (pre)malignant cells but also to adapt to changing microenvironmental conditions. Targeting the metabolic alterations of malignant cells has been the subject of an intense wave of investigation, resulting in the identification of promising therapeutic strategies. Since the inflammatory milieu and the tumor microenvironment are similar, the metabolism of immune cells and its regulation has recently come under renewed interest as a target for immunotherapy. Here, we describe different tools and techniques to study the bioenergetic metabolism of cultured cells, using immune cells as a model. Our methodological approach relies on an extracellular flux analyzer, an instrument that enables the real-time measurement of the two central pathways used by living cells to generate adenosine triphosphate: glycolysis and oxidative phosphorylation. This instrument and similar technological innovations have transformed the study of cellular metabolism, unveiling its profound impact on various immunologic and oncological disorders.


Assuntos
Bioquímica/métodos , Glicólise , Sistema Imunitário/citologia , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Bioquímica/instrumentação , Células Cultivadas , Metabolismo Energético , Espaço Extracelular/metabolismo , Humanos , Sistema Imunitário/metabolismo , Células Jurkat , Linfócitos/metabolismo , Metaboloma , Células Mieloides/metabolismo , Fosforilação Oxidativa , Análise Serial de Tecidos
11.
Semin Immunol ; 24(6): 384-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23391428

RESUMO

Reactive oxygen species (ROS) such as superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) have long been implicated as pro-inflammatory, yet the sources of ROS and the molecular mechanisms by which they enhance inflammation have been less clear. Recent advances in the understanding of the molecular basis of inflammation mediated by the innate immune system have allowed these issues to be revisited. Although the Nox2 NADPH oxidases generate the bulk of ROS for antimicrobial host defense, recent studies have found that NADPH oxidase-dependent ROS production can actually dampen macrophage inflammatory responses to sterile pro-inflammatory stimuli. Instead, production of mitochondrial ROS has emerged as an important factor in both host defense and sterile inflammation. Excess mitochondrial ROS can be generated by either damage to the respiratory chain or by alterations of mitochondrial function such as those that increase membrane potential and reduce respiratory electron carriers. In autoinflammatory diseases, where key components of innate immune responses are activated by genetic mutations or environmental stimuli, inflammation has been found to be particularly sensitive to inhibition of mitochondrial ROS production. These findings have highlighted mitochondrial ROS as a novel generator of pro-inflammatory ROS and a potential therapeutic target in inflammatory diseases.


Assuntos
Inflamação/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Comunicação Celular , Humanos , Sistema Imunitário/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...